If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2=115x+250
We move all terms to the left:
5x^2-(115x+250)=0
We get rid of parentheses
5x^2-115x-250=0
a = 5; b = -115; c = -250;
Δ = b2-4ac
Δ = -1152-4·5·(-250)
Δ = 18225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{18225}=135$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-115)-135}{2*5}=\frac{-20}{10} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-115)+135}{2*5}=\frac{250}{10} =25 $
| 8q-8=-40 | | 0=-5x^2+115x+250 | | 1/3x+58=90 | | 4e+10=50 | | 8q+8=-88 | | 3e+11=17 | | 6g+5=65 | | 4(x-2)-x=3x+2 | | 87-t=12 | | 4k+8=-36 | | 87+t=12 | | 2×+5=y | | 4x−11=17 | | 0=-2x^2-7x+15 | | 2x+67x=45x-9 | | 0=15-2x^2-7x | | 17x+4-10(x+2)=12 | | x^2-70=5 | | x^2=70=5 | | 3c-4c+1=5c+2+ | | 6p-18=5p-7 | | 4x+1-×+10=29 | | 3.14=7*1-2y | | -2+x/18=1 | | (x•2)=6 | | 6+17+2x=15+x | | 1,2 | | 2x^2+0x-28=0 | | -1/4=x/20 | | x•2=6 | | 4x-2(x+1)=3x | | 6+4(p=3) |